organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Azido-6-deoxy-a-L-galactose (6-azido-L-fucose) monohydrate

K. Victoria Booth,^a* Sarah F. Jenkinson,^a Devendar Rao,^b Tsuyosi Simonisi,^b George W. J. Fleet,^a Ken Izumori^b and David J. Watkin^c

^aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ^bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and ^cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: victoria.booth@chem.ox.ac.uk

Received 25 June 2008; accepted 18 July 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.073; data-to-parameter ratio = 8.1.

Although 6-azido-6-deoxy-L-galactose in aqueous solution is in equilibrium between the open-chain, furanose and pyranose forms, it crystallizes solely as 6-azido-6-deoxy- α -Lgalactopyranose monohydrate, $C_6H_{11}N_3O_5 \cdot H_2O$, with the six-membered ring adopting a chair conformation. The structure exists as hydrogen-bonded chains, with each molecule acting as a donor and acceptor of five hydrogen bonds. There are no unusual crystal packing features and the absolute configuration was determined from the use of 1-azido-1deoxy-D-galactitol as the starting material.

Related literature

For related literature see: Beadle et al. (1992); Izumori (2002, 2006); Granstrom et al. (2004); Sun et al. (2007); Levin (2002); Skytte (2002); Nakajima et al. (2004); Sui et al. (2005); Hossain et al. (2006); Kolb & Sharpless (2003); Chesterton et al. (2006); Görbitz (1999); Larson (1970); Prince (1982); Watkin (1994); Yoshihara et al. (2008).

Experimental

Crystal data

$C_6H_{11}N_3O_5 \cdot H_2O$
$M_r = 223.19$
Orthorhombic, $P2_12_12_1$
a = 5.9687 (3) Å
b = 7.7395 (4) Å
c = 20.9768 (11) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) $T_{\rm min} = 0.86, T_{\rm max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	136 parameters
$wR(F^2) = 0.073$	H-atom parameters constrained
S = 0.80	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
1095 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

 $V = 969.02 (9) \text{ Å}^3$

Mo Ka radiation $\mu = 0.14 \text{ mm}^{-1}$

 $0.50 \times 0.05 \times 0.05~\text{mm}$

7317 measured reflections

1296 independent reflections

792 reflections with $I > 2\sigma(I)$

Z = 4

T = 150 K

 $R_{\rm int}=0.053$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H11 \cdots O4^{i}$ $04 - H41 \cdots O6^{i}$ $015 - H151 \cdots O4^{ii}$	0.81 0.83 0.83	1.96 1.83 2.19	2.760 (4) 2.648 (4) 2.989 (4)	169 171 163
$\begin{array}{l} O8 - H81 \cdots O15^{iii} \\ O6 - H62 \cdots O1^{iv} \end{array}$	0.83 0.81	1.90 1.98	2.732 (4) 2.755 (4)	177 162
Symmetry codes: (i)	$-x+2, y+\frac{1}{2},$	$-z + \frac{3}{2};$ (ii)	$-x + \frac{3}{2}, -y + 1,$	$z - \frac{1}{2};$ (iii)

 $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

This work was supported in part by the Programme for the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN). The authors also thank the Oxford University Chemical Crystallography Service for use of the instruments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2654).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Chesterton, A. K. S., Jenkinson, S. F., Jones, N. A., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o2983-o2985.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.
- Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369-371.

- Izumori, K. (2002). Naturwissenschaften, 89, 120-124.
- Izumori, K. (2006). J. Biotechnol. 124, 717-722.
- Kolb, H. C. & Sharpless, K. B. (2003). Drug Discovery Today, 8, 1128-2??.
- Larson, A. C. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Levin, G. V. (2002). J. Med. Food, 5, 23-36.
- Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). *Cancer Res.* 64, 1794– 1801.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224-224.
- Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Int. J. Oncol. 27, 907–912.
- Sun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food. Contr. 18, 220–227.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). *Tetrahedron Asymmetry*, **19**, 739–745.

Acta Cryst. (2008). E64, o1568-o1569 [doi:10.1107/S1600536808022563]

6-Azido-6-deoxy-*Q*-L-galactose (6-azido-L-fucose) monohydrate

K. V. Booth, S. F. Jenkinson, D. Rao, T. Simonisi, G. W. J. Fleet, K. Izumori and D. J. Watkin

Comment

The range of rare sugars that are now readily available has increased in recent years due to both chemical (Beadle *et al.*, 1992) and biotechnological (Izumori, 2002,2006; Granstrom *et al.*, 2004) advances. Interest in rare sugars has been prompted by the search for low calorie alternative food stuffs (Sun *et al.*, 2007; Levin, 2002; Skytte, 2002) and also a potential range of other beneficial therapeutic properties (Nakajima *et al.*, 2004; Sui *et al.*, 2005; Hossain *et al.*, 2006).

The methodology developed by Izumori (2002,2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara *et al.*, 2008). The viability of the methodology for the corresponding azido substituted systems was investigated with the synthesis 6-azido-6-deoxy-L-galactose **3** by microbial oxidation of 1-azido-1-deoxy-D-galactitol **1** with *K.Pneumoniae* 40bR followed by isomerization to the aldose **3** using D-arabinose isomerase (Fig. 1).

6-Azido-6-deoxy sugars have been little investigated and may have similar interesting properties. They are also of interest as Click Chemistry substrates, allowing a wide range of novel sugar substituted triazoles to be synthesized quickly, utilizing a few easy and reliable reactions. A click reaction should be wide in scope and easy to perform, use only readily available reagents, and be insensitive to oxygen and water. Reaction work-up and purification uses benign solvents and avoids chromatography. In many cases the reaction can be performed in, or on top of water; (Kolb and Sharpless, 2003) presenting an obvious environmental benefit to many existing precedures.

6-Azido-6-deoxy-L-galactose monohydrate crystallized solely in the α -pyranose form with the 6-membered ring adopting a chair conformation (Fig. 2). Each molecule acts as a donor and acceptor for 5 hydrogen bonds. A non standard hydrogen bond to the terminal azide nitrogen has been removed from the packing diagrams. The structure exists as discrete chains of molecules run ning parallel to the *a*-axis and exhibits no unusual crystal packing features. As is common with these materials, the azide group is non linear [N12—N13—N14 171.91° (6)] (Chesterton *et al.* 2006).

Experimental

The title compound was crystallized from water: m.p. 345 - 348K; $[\alpha]_D^{21}$ -52.3 (*c*, 1.05 in H₂O).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.15) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93–0.98, O—H = 0.82 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

A few very weak reflections were ignored in the refinement, and was therefore carried out on only 1095 reflections, not the full 1296 originally collected.

Figures

Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3. The packing diagram for the title compound projected along the *b*-axis.

6-Azido-6-deoxy-α-L-galactose monohydrate

Crystal data	
$C_6H_{11}N_3O_5H_2O$	$F_{000} = 472$
$M_r = 223.19$	$D_{\rm x} = 1.530 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2018 reflections
a = 5.9687 (3) Å	$\theta = 5-27^{\circ}$
b = 7.7395 (4) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 20.9768 (11) Å	T = 150 K
$V = 969.02 (9) \text{ Å}^3$	Plate, colourless
<i>Z</i> = 4	$0.50\times0.05\times0.05~mm$
Data collection	
Nonius KappaCCD diffractometer	792 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.053$

Monochromator: graphite

T = 150 K	$\theta_{max} = 27.4^{\circ}$
ω scans	$\theta_{\min} = 5.2^{\circ}$
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	$h = -7 \rightarrow 7$
$T_{\min} = 0.86, \ T_{\max} = 0.99$	$k = -9 \rightarrow 10$
7317 measured reflections	$l = -26 \rightarrow 27$
1296 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F^2)]$
$wR(F^2) = 0.073$	$(\Delta/\sigma)_{\rm max} = 0.0003$
<i>S</i> = 0.80	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
1095 reflections	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
136 parameters	Extinction correction: None
Primary atom site location: structure-invariant direct	

methods

										-
Eractional	atomic	coordinatos	and is	otronic	r aquin	alant isot	vonia d	displacement	naramatars	(λ^{2})
raciionai	aiomic	coorainales	unu is	δοιτορίε ε	n equive	aleni isoli	ορίε ι	uspiacemeni	purumeters ((A)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.7366 (3)	0.6574 (2)	0.68646 (7)	0.0240
C2	0.8440 (4)	0.5120 (3)	0.65721 (11)	0.0207
C3	0.8824 (4)	0.3657 (4)	0.70492 (11)	0.0198
O4	1.0088 (3)	0.4176 (3)	0.76006 (7)	0.0239
C5	0.6592 (4)	0.2991 (4)	0.72879 (11)	0.0185
O6	0.7020 (3)	0.1614 (2)	0.77263 (7)	0.0218
C7	0.5141 (4)	0.2396 (3)	0.67315 (11)	0.0203
08	0.6145 (3)	0.0996 (3)	0.64297 (8)	0.0276
09	0.4833 (3)	0.3840 (2)	0.63098 (7)	0.0228
C10	0.6911 (4)	0.4467 (4)	0.60441 (11)	0.0223
C11	0.6234 (5)	0.5891 (4)	0.55904 (11)	0.0286
N12	0.5055 (4)	0.5214 (3)	0.50147 (10)	0.0336
N13	0.3088 (4)	0.4780 (4)	0.51035 (10)	0.0347
N14	0.1278 (4)	0.4350 (5)	0.51097 (11)	0.0585
O15	0.7358 (3)	0.5841 (3)	0.38440 (7)	0.0372
H21	0.9866	0.5468	0.6385	0.0251*
H31	0.9606	0.2684	0.6830	0.0246*
H51	0.5793	0.3928	0.7511	0.0236*
H71	0.3616	0.2056	0.6878	0.0253*
H101	0.7643	0.3512	0.5817	0.0281*
H111	0.7596	0.6432	0.5432	0.0344*
H112	0.5329	0.6774	0.5803	0.0343*
H152	0.6532	0.5377	0.4105	0.0561*
H11	0.8239	0.7312	0.6983	0.0373*

H41	1.1103	0.4866	0.7514	0.0381*
H151	0.6582	0.6044	0.3527	0.0563*
H81	0.5011	0.0423	0.6335	0.0441*
H62	0.5844	0.1468	0.7909	0.0334*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0231 (9)	0.0184 (10)	0.0306 (9)	0.0001 (9)	0.0005 (9)	-0.0023 (9)
C2	0.0192 (13)	0.0202 (16)	0.0226 (12)	0.0007 (13)	0.0055 (12)	-0.0010 (13)
C3	0.0164 (12)	0.0236 (18)	0.0193 (12)	0.0008 (13)	-0.0022 (11)	-0.0033 (13)
O4	0.0215 (9)	0.0256 (11)	0.0247 (9)	-0.0089 (9)	-0.0044 (8)	0.0023 (9)
C5	0.0192 (13)	0.0169 (16)	0.0193 (12)	-0.0005 (12)	0.0002 (11)	0.0020 (13)
O6	0.0193 (9)	0.0225 (11)	0.0236 (8)	0.0003 (9)	0.0017 (8)	0.0046 (10)
C7	0.0217 (13)	0.0184 (14)	0.0207 (13)	0.0012 (14)	-0.0002 (13)	-0.0003 (13)
O8	0.0269 (10)	0.0248 (11)	0.0310 (9)	-0.0028 (10)	-0.0001 (9)	-0.0065 (10)
O9	0.0194 (9)	0.0267 (11)	0.0223 (9)	-0.0011 (9)	0.0005 (8)	0.0043 (9)
C10	0.0218 (14)	0.0238 (16)	0.0213 (12)	0.0001 (13)	0.0043 (12)	0.0004 (13)
C11	0.0293 (15)	0.0334 (17)	0.0232 (13)	-0.0028 (16)	-0.0001 (12)	0.0066 (15)
N12	0.0253 (12)	0.0542 (19)	0.0213 (11)	-0.0009 (13)	0.0003 (11)	0.0049 (13)
N13	0.0364 (15)	0.0501 (19)	0.0174 (13)	0.0037 (14)	0.0003 (11)	0.0006 (13)
N14	0.0350 (16)	0.107 (3)	0.0336 (15)	-0.0156 (19)	0.0022 (14)	-0.0111 (19)
O15	0.0357 (10)	0.0476 (13)	0.0283 (9)	0.0078 (12)	0.0071 (9)	0.0092 (11)

Geometric parameters (Å, °)

O1—C2	1.433 (3)	С7—О9	1.437 (3)
O1—H11	0.812	С7—Н71	0.997
C2—C3	1.529 (3)	O8—H81	0.834
C2—C10	1.522 (3)	O9—C10	1.444 (3)
C2—H21	0.975	C10-C11	1.511 (4)
C3—O4	1.438 (3)	C10—H101	0.982
C3—C5	1.514 (3)	C11—N12	1.493 (3)
С3—Н31	0.999	C11—H111	0.973
O4—H41	0.828	C11—H112	0.978
C5—O6	1.431 (3)	N12—N13	1.235 (3)
С5—С7	1.524 (3)	N13—N14	1.130 (3)
С5—Н51	0.986	O15—H152	0.820
O6—H62	0.807	O15—H151	0.825
С7—О8	1.391 (3)		
C2—O1—H11	113.3	С5—С7—О9	108.0 (2)
O1—C2—C3	111.62 (19)	O8—C7—O9	112.39 (18)
O1—C2—C10	107.7 (2)	С5—С7—Н71	111.2
C3—C2—C10	108.7 (2)	O8—C7—H71	109.2
O1—C2—H21	110.3	O9—C7—H71	106.2
C3—C2—H21	109.7	С7—О8—Н81	100.0
C10—C2—H21	108.8	C7—O9—C10	112.87 (18)
C2—C3—O4	113.5 (2)	C2—C10—O9	110.25 (19)

C2—C3—C5	109.7 (2)	C2-C10-C11	112.1 (2)
O4—C3—C5	106.90 (18)	O9—C10—C11	104.97 (19)
С2—С3—Н31	109.1	C2-C10-H101	109.6
O4—C3—H31	109.6	O9-C10-H101	108.5
С5—С3—Н31	107.9	C11-C10-H101	111.2
C3—O4—H41	112.7	C10-C11-N12	112.3 (3)
C3—C5—O6	108.02 (19)	C10-C11-H111	107.7
C3—C5—C7	110.46 (18)	N12-C11-H111	105.6
O6—C5—C7	111.6 (2)	C10-C11-H112	111.8
C3—C5—H51	109.4	N12-C11-H112	110.7
O6—C5—H51	109.2	H111—C11—H112	108.4
C7—C5—H51	108.1	C11—N12—N13	114.9 (2)
С5—О6—Н62	104.7	N12—N13—N14	171.9 (3)
С5—С7—О8	109.8 (2)	H152—O15—H151	106.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O15—H152…N12	0.82	2.11	2.856 (4)	152
O1—H11···O4 ⁱ	0.81	1.96	2.760 (4)	169
O4—H41…O6 ⁱ	0.83	1.83	2.648 (4)	171
O15—H151…O4 ⁱⁱ	0.83	2.19	2.989 (4)	163
O8—H81···O15 ⁱⁱⁱ	0.83	1.90	2.732 (4)	177
06—H62…O1 ^{iv}	0.81	1.98	2.755 (4)	162

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) -x+3/2, -y+1, z-1/2; (iii) x-1/2, -y+1/2, -z+1; (iv) -x+1, y-1/2, -z+3/2.

Fig. 1

